A Note on the Signed Sliding Window Integer Recoding and a Left-to-Right Analogue
نویسنده
چکیده
Addition-subtraction-chains obtained from signed digit recodings of integers are a common tool for computing multiples of random elements of a group where the computation of inverses is a fast operation. Cohen and Solinas independently described one such recoding, the w-NAF. For scalars of the size commonly used in cryptographic applications, it leads to the current scalar multiplication algorithm of choice. However, we could find no formal proof of its optimality in the literature. This recoding is computed right-to-left. We solve two open questions regarding the w-NAF. We first prove that the w-NAF is a redundant radix-2 recoding of smallest weight among all those with integral coefficients smaller in absolute value than 2w−1. Secondly, we introduce a left-toright recoding with the same digit set as the w-NAF, generalizing previous results. We also prove that the two recodings have the same (optimal) weight. Finally, we sketch how to prove similar results for other recodings.
منابع مشابه
Signed Binary Representations Revisited
The most common method for computing exponentiation of random elements in Abelian groups are sliding window schemes, which enhance the efficiency of the binary method at the expense of some precomputation. In groups where inversion is easy (e.g. elliptic curves), signed representations of the exponent are meaningful because they decrease the amount of required precomputation. The asymptotic bes...
متن کاملImprovement on Ha-Moon Randomized Exponentiation Algorithm
Randomized recoding on the exponent of an exponentiation computation into a signed-digit representation has been a well known countermeasure against some side-channel attacks. However, this category of countermeasures can only be applicable to those cryptosystems with fixed parameters on the base integer when evaluating exponentiation or to some classes of cryptosystems such that the inversion ...
متن کاملA Simple Left-to-Right Algorithm for Minimal Weight Signed Radix-r Representations
We present a simple algorithm for computing the arithmetic weight of an integer with respect to a given radix r ≥ 2. The arithmetic weight of n is the minimum number of nonzero digits in any signed radix-r representation of n. This algorithm leads to a new family of minimal weight signed radix-r representations which can be constructed using a left-to-right on-line algorithm. These representati...
متن کاملA Simple Left-to-Right Algorithm for the Computation of the Arithmetic Weight of Integers
We present a simple algorithm for computing the arithmetic weight of an integer with respect to a given radix r ≥ 2. The arithmetic weight of n is the minimum number of nonzero digits in any signed radix-r representation of n. This algorithm leads to a new family of minimal weight signed radix-r representations which can be constructed using a left-to-right on-line algorithm. These representati...
متن کاملLower bounds on the signed (total) $k$-domination number
Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004